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Abstract. When analyzing experimentally the performance of metaheuristic
algorithms on a set of hard instances of a NP-hard problem, the required time to
carry out the experimentation can be very large. A way to reduce the volume of
experimentation is to incorporate variance reduction techniques in the
computational experiments. The traditional approaches propose methods for the
incorporation of these techniques which are dependent of the technique, the
problem and the metaheuristic used. In this work we propose a new approach
that consists in developing methods of general purpose which allow
incorporating techniques of variance reduction, independently of the problem
and of the metaheuristic used. To validate the feasibility of the approach, a
method of general purpose is described which allows incorporating the
technique of antithetic variables in computational experiments with
metaheuristic algorithms. The experimental results show that with the proposed
method a maximum reduction level of 55% in the number of experiments is
achieved, with a minimum resources investment.

1. Introduction

Many real world applications require the solution of optimization problems which
belong to a special class denominated NP-hard problems. Currently -efficient
algorithms to solve large instances for this kind of problems are not known, and one
has the suspicion that it is not possible to build them. In [1, 2] it is indicated that the
solution of large instances of NP-hard problems only can be solved simplifying the
problem or using an approximate solution method. Nondeterministic heuristic
methods of general purpose, denominated metaheuristics by Glover in [3], are
currently considered very promising tools for the approximated solution of large
instances of these problems.

Given the randomized characteristic of the metaheuristics, their performance is
analyzed executing a series of computational experiments. In these experiments the
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behavior of the averages of the solution quality and the execution time of the
algorithm are observed. When the variation of these averages is high, it is required a
great quantity of experiments to determine a clearly tendency in the measurements
carricd out. In this work the problem of reducing this variation, and in consequence
the number of experiments required to analyze the performance of the metaheuristic

algorithms, is approached.
In the following scctions the problem description, the related works, the proposed
method and the experimental results are presented.

2. Problem Description

tion study is to determine the value of certain amount @ related to
A simulation produces a variate x, whose expected value is . A
second execution of the simulation produces a new variate Xx»; independent of the

o it is 0. This process continues until completing a

previous one, whose average als ] ]

total of n executions and producing 7 independent variates x;, X3, ...X,, With 6=E(x,)
. : >

and P=Var(x;). In order to estimate the mean (6) and variance (o”) of the population

s

The goal of a simula
a stochastic process.

the sample mean x=%; x;/ nand the sample variance s=%; ((x; — X )2/ (n-1) are

used. In [4] is indicated that to determine the goodness of the estimator x respect to
8, its quadratic error average E[(x- 6)*] = Var(x) = Var(Z i n)=(Z; Var(x)) / i’ =
o&*/n = s*/n must be used. This expression has two consequences: (a) that it is possible
to increase the quality of the estimation of 8 increasing the number of experiments
and/or reducing to the variance sample and (b) that it is possible to reduce the number
of experiments without affecting the quality of the estimation reducing the variance

sample.

In [5] is indicated that to reduce the variance in computational experiments must be
incorporating techniques of variance reduction. When it is analyzed the performance
of metaheuristic algorithms experimentally on a group of hard instances of a NP-hard

t the experimentation is very long. A decrease

problem, the time required to carry ou
in the number of experiments can be the only alternative to successfully obtain

evidence enough to support the conclusions of the analysis of the algorithms
performance.

Metaheuristic algorithms realize a search through the space of solutions making
random decisions in order to avoid to get stuck on some local optima and to advance
quickly toward the global optima. Typically in each computational experiment or
exccution of the algorithm an initial solution is randomly uniform generated and a
local search is realized in the neighborhood of this solution to improve it. Once the
possibility of improving it is exhausted, a new experiment begins and the process is
repeat’ed. In each experiment i the target output x; is obtained. When all the
experiments are executed, the mean and the variance of x; are calculated. Given the
randomness of the metaheuristic algorithms, their outputs depend on a set of uniforny
random numbers {1;} generated during the algorithm execution such way that x; = X
(0,t12,....,u). A part of these numbers are binding with the decisions associated’t’o tlfei
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construction of the initial solution and others with the decisions in the local search
process. Contrary to a simulation in a metaheuristic algorithm the amount of random
decisions carried out in each experiment is variable; this constitutes the most
important difficulty to apply the method of antithetic variates in the reduction of the
variance in experiments with metahcuristic algorithms.

3. Related Work

Some of the most recent and relevant works related with the problem of incorporate

the techniques of variance reduction in computational experiments with metaheuristic
algorithms are the following one:

McGeoch is one of the pioneers in the development of methods of variance
reduction in experiments with randomized algorithms. In [6, 7] is proposed the use of
the techniques of common random numbers, antithetic and control variates, in the
variance reduction in the experimental analysis of the performance of heuristic
algorithms applied to the solution of the self-organized search problem. It establishes
that, in the experimental analysis of the performance of algorithms exists many
opportunities to apply techniques of variance reduction, because the algorithms are
simpler and they have a more precise definition than the simulation problems. The
main limitation of this approach is that the proposed methods are dependent of the
technique, the problem and the algorithm used.

In [5, 8] the authors propose a method to reduce the variance in experiments with
metaheuristic algorithms based on the technique of antithetic variates. The method is
described in the context of the solution of the SAT problem with the threshold
accepting metaheuristic. The method requires that the solutions of the problem be
represented using binary vectors and that the metaheuristic generates an initial
random solution.

As we can see the traditional approach consists on developing variance reduction
methods that are dependent of the technique, the problem and the metaheuristic used.
In this work a new approach is proposed, it consists on developing methods of general
purpose that allow incorporating techniques of variance reduction, which they are
independent of the problem and the metaheuristic used. In order to validate the
proposed approach a method of general purpose based on the technique of antithetic
variates is described and it is applied to different problems and metaheuristics.

4. Proposed Method

4.1. Main Idea

In order to develop a variance reduction general purpose method the basic idea
consists on identifying the first random decision that always occurs (conditional
independent) in each computational experiment or algorithm execution. This decision,
which will be denominated base decision, it should be associated to the generation of
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alone one random number. Unlike the rest of the random numbers generated in the
the random number associated to the base decision, must be stored so that it
will be available in the following experiment. If the global variable a€(0,1) is used to
store the random number associated to the base decision, before the number
generation we must to verify if the number of the experiment currently exccuted is
even or uneven. If the number of the experiment is uneven it must be generated a new
random number and stored it in a, otherwise the complement of the random number
currently stored in @ must be stored in a. The idea is to use alone one of the random
numbers generated in the algorithm process, to negatively correlate all the outputs of

all experiments realized.

process,

4.2. Method Description

The proposed method consists of the following four steps:
ision. Analyze the sequence of random decisions that

occurs in each computational experiment. Determine all the decisions that not

necessarily takes place in each experiment, these occurs if a conditional comes true.
Identify those that always occur in the experiments, their occurrence is non-
conditional dependent. From the set of decisions that consistently occurs, select the

first one and set it like the base decision.
Step 2. Generate the random number associated to the base decision. Let g and c,

the global variables in which the random number associated to the base decision and
the current experiment number, respectively will be stored. Now before carrying out
the base decision, if ¢ is uneven a new random number must be generated and stored
(a= random()), otherwise the complement of a must be stored (a=1-a). Once
completed the previous process the variable @ is used to carrying out the base
decision. Now the pair of random numbers associated to the base decision in

successive experiments (uneven and even) will be correlated negatively.
Step 3. Determine the outputs of each experiment. Execute all the experiments and

get the values of the specified output 4, for each experiment i =1,2..., NEXP.
Step 4. Determine sample mean and sample variance. The values of the variates x,
y, and z are determined, using the following expressions:

xia) = by, y(l-a) =t6; Y z= ( x50 + y(l-a) )2
=1,2,...,NEXP/2.

Calculate the mean and the variance of z.
By definition #, x;, y;, and z;, are estimators of the expected value of variate ¢, and

as z = (x+y)/2, then Var(z) = Var((x+y)/2) = % [ Var(x) + Var(y) + 2 Cov(x,y)]. Now
as x and y were generated from negatively correlated inputs, then Cov(x, y) <0. Then
the method must produce a reduction of the sample variance of the estimator z; with
respect to any estimator 2’; obtained using values of £ negatively noncorrelated.

This method can be used with any combination of a metaheuristic algorithm and
NP_hard problem. The method is applicable to any kind of randomized algorithm,
nevertheless in this work only are showed the results of experiments realized with

metaheuristic algorithms.

Step 1. Identify the base dec
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4.3. Example

In this example the SAT problem instance f600 is used. The instance was solved
executing 30 times the threshold accepting metaheuristic.

Table 1 shows the execution time #; observed for each experiment i=1, 2,...,30,
when the proposed method isn’t applied. In this case, both the mean and variance of
the variate ¢ are directly calculated. However, the variates x, y, and z will be calculated
to show the effects produced by the method application. Table 2 shows the x;, y;, and
z; values obtained without the method application. As we can see the x and y
covariance is 0.0035 and the z variance is 0.0142.

Table 1. Execution times obtained without the proposed method application.

i t: 1 t i t; i Y i t; i t

1 0.704 6 0.906 11 0.828 16 1.125 21 1.015 26 1.11
2 0.718 7 0.657 12 0.907 17 0.906 22 0.953 27 0.625
3 1.188 8 0.937 13 0.89 18 1.063 23 0.719 28 0.781
4 0.89 9 0.656 14 0.688 19 0.797 24 0.89 29 0.844
5

0.641 10 0797 15 0734 20 1.156 25 0922 30 0.687

Table 2. x, y, and z values obtained without the proposed method application.

X; Vi Z J X; Yi zj
0.704 0.718 0.711 9 0.906 1.063 0.9845
1.188 0.89 1.039 10 0.797 1.156 0.9765
0.641 0906 0.7735 11 1.015 0953 0.984

J

1

2

3

4 0657 0937 0797 12 0719 089 0.8045
5

6

7

8

0.656 0.797 0.7265 13 0922 1.11 1.016
0.828 0.907 0.8675 14 0.625 0.781 0.703

089 0.6838 0.789 15 0.844 0.687 0.7655
0.734 1.125 0.9295

Table 3 shows the execution time #; observed when the proposed method is applied.
In this case, both the mean and variance of the variate ¢ are calculated using the
method step 4. If the x;, y, and z; values are calculated, the x and y covariance is -
0.00052 and the z variance is 0.00088. As we can see the proposed method
application produces a variance reduction of 37%.

Table 3. Execution times obtained with the proposed method application.

it i t; Lt i it i

1 0.704 6 0.641 11 0688 16 0922 21 0922 26 0.703
2 0687 7 0922 12 0.734 17 0782 22 1 27 0.797
3 1.00 8 0812 13 0907 18 0.843 23 03875 28 0.891
4 075 9 0.641 14 0.64 19 0844 24 086 29 0.625
5 0734 10 1.109 15 1.031 20 0.609 25 0937 30 0.781
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5. Experimental Results

A set of experiments were exccuted to evaluate the variance reduction level when the
proposed method is applied in experiments with metaheuristic algorithms. A set of
instances were used and each one was solved with two implementations. For each
algorithm an implementation incorporates the proposed method and the other not.
Thirty experiments were executed with cach instance and the specified outputs were
measured. Finally the variances before and after the application of the method, were
used to determine the variance reduction level.

To describe a typical set of experimental results it will be used three test cases that
include three problems and three metaheuristics. A test case includes the SAT
problem and the metaheuristics grasp [12] and tabu search [13], other includes the
Lennard-Jones problem and two variants of the genetic algorithm described in [14],
and the last one test case includes the hot rolling scheduling problem and a
metaheuristic genetic algorithm based [15].

Table 4 shows the variance reduction leve
Avg(%E), obtained when the instances were solved with the metaheuristic grasp. The
first column contains the instances used in the experiments. The columns VB and VA
contain the variance obtained before and after the method application. The column
%R shows the variance reduction percentage. Also, the table includes the global

average of the reduction level reached.

1, of the solution quality average

Table 4. Variance reduction level observed with: the SAT problem and a grasp algorithm.

Avg(%E)
Instance VB VA %R

uf200-0100 7.40221 1.809563 76%
uf250-01 3.68832  2.1144068 43%
uf250-010 480004  2.8571141 40%
F600 9.0066  10.409657  -16%
F1000 24.0414  9.4095563 61%
Global reduction avg. 41%

Table 5. Variance reduction level observed with:
the SAT problem and a tabu search algorithm.

Avg(%E)

Instance VB VA %R
uf200-0100 9.13128 4.12374 55%
uf250-01 15.0622  7.20976 52%
uf250-010 113515 3.35256 70%
F600 164.599  101.353 38%
F1000 256,397  101.923 60%

Global reduction avg. 55%
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Table 6. Variance reduction observed with:
the Lennard Jones problem and a genetic algorithm (v1).
Avg(%E) Avg(NEOF) Avg(NG)
1 VB VA %R VB VA %R VB VA %R
15 0.05 0.03 40% 61,407 15,761 74% 1.08 0.54 50%
16 0.05 0.07 -40% 139,689 42,153 70% 3.46 127 63%
17 0 0 0% 9,760 3,789 61% 0.03 0.03 0%
18 0.06 0.02 67% 250,824 142,806 43% 5.1 331 35%
19 0.78 024 69% 294,092 210,221 29% 6.16 2.99 51%
20 0.49 029 41% 280,123 208,500 26% 4.64 236 49%
21 0.45 02 56% 411,777 160,780 61% 6.88 2.55 63%
22 0.82 028 66% 462,982 156,176 66% 6.22 1.98 68%
23 0.97 0.51 47% 338,332 285,224 16% 431 3.94 9%
24 0.46 0.16 65% 462,886 378918 18% 5.79 5.37 7%
25 0.26 0.15 42% 198,652 357,526 -80% 3.21 53 -65%
26 0.81 0.19 77% 688,233 228416 67% 8.72 2.62 70%
27 0.81 023 72% 535,909 129,526 76% 6.38 243 62%
28 0.64 027 58% 403,537 194,353 52% 4.99 3.04 39%
29 0.4 042 -5% 495,611 344,752 30% 4.88 3.88 20%
30 0.41 024 41% 1,341,653 112,631 92% 1274 1.14 91%
Global reduction
(Avg) 43% 38% 38%

Table 5 shows the variance reduction level, of the solution quality average
Avg(%E), obtained with the metaheuristic tabu search. The Table 2 structure is
similar to the structure of the Table 4.

Table 6 shows the variance reduction level observed in three random outputs. In
this test case 15 instances of the Lennard Jones problem were solved with a genetic
algorithm (v1). The random outputs were the average of the error percentage
Avg(%E), the average of the evaluations number of the objective function
Avg(NEOF) and the average of the generations number Avg(NG). The first column
contains the instances used in the experiments, and the additional columns are
grouped in three subtables, each one with three columns. The structure of the
subtables is similar to the Table 4 structure.

Table 7 have the same structure that Table 6, and contains the reduction level
observed when a variant of the genetic algorithm (v2) was used.

Table 8 shows the variance reduction level observed in two random outputs. In
this test case 17 industrial instances of the hot rolling scheduling problem were solved
with a genetic algorithm. The random outputs were the average of the rolling time
Avg(%RT) and the average of the required time to obtain the best solution Avg(TB).
The first column contains the instances used in the experiments, and the additional

columns are grouped in two subtables, each one with three columns. The structure of
the subtables is similar to the Table 4 structure.
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[
)

Table 7. Variance reduction observed with:
the Lennard Jones problem and a genetic algorithm (v2).

Avg(%E) Avg(NEOF) Avg(NG)

1 VB VA %R VB VA %R VB BA %R
1) 0.08 0 100% 175,755 71,702 59% 4.2 2.5 40%
16 0.03 0 100% 37,722 26,511 81% 42 083 80%
17 0 0 0% 4,647 2,253 52% 0 0 0%

25% 14.7 10.8 27%

18 0.1 004 64% 679,707 51 2,567
19 055 022 60% 953,268 397,323
0.68 0.21 69% 1,758,666 1,021,182 42%

58% 1839 6.59 64%
2848 16.7 41%

20
21 045 025 4% 916,672 997,527 9% 1593 13 19%
22 062 024 61% 1,547,998 750,757 s2% 2579 112 57%
23 033 025 24% 2,357,355 986,281 58% 29.86 13.1  56%
S pag 028 26% - BIN663. 1,758,849  -101% 1143 26.8 -134%
25 029 0.1 66% 1,777,160 391,122 78% 21.61 6.85  68%
26 048 018  63% 2334290 1,020,252 s6% 3412 137 60%
27 054 039 28% 3,261,303 1,257,075 61% 4478 14 69%

597,272 73% 2633 746  12%

28 062 028 55% 2,197,110
29 049 022 55% 2,885274 716,521
30 027 026 4% 4,187,946 722,313

Global reduction (avg) 51%

75% 31.06 8.7 72%
83% 4833 6.98 86%
42% 42%

d can reduce the

shows that the proposed metho
instances and the

Imost all the considered
59%. The investment of resources required to
since only it is required to control one of the
outstanding feature of the method is
ariance of all the random outputs
n see that the method operates

The experimental evidence
variance of the random outputs for a
reduction global levels go from 14% to 5
obtain these reduction level is minimum,
random numbers generated by the algorithm. An
that it simultancously produces a reduction in the v
of the algorithm. In the Tables 3, 4 and 8 we ca
simultaneously on several outputs.

As we can se the proposed method allows to
reduction in computational experiments, indepen
the metaheuristic used. Currently the most relevant open ques
reduction don’t operate over several instances (see f600 and others).

incorporate a technique of variance
dently of the problem solved and of
tion is: why the

6. Conclusions and Future Work

In this paper the problem of how to reduce the amount of required experiments to
analyze the performance of metaheuristic algorithms was approached. Traditional
appro_aches propose to apply variance reduction methods that are dependent of the
technique, of the problem and of the metaheuristic used. The solution approach
proposed in this work consists in developing reduction methods which they are
independent of the problem and of the metaheuristic used.
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Table 8. Variance reduction observed with:
the hot rolling scheduling problem and a genetic algorithm.

Avg(RT)

Avg(TB)
Instance VB VA

%R VB VA %R
hsm002.txt ~ 0.000229 0.000188 17.90% 28.619 34.049 -18.97%
hsm003.txt  0.000186 0.000115 38.17% 3.591 2.812 21.69%
hsm004.txt  0.000180 0.000143 20.56% 4.901 2.275 53.58%
hsm005.txt ~ 0.000183 0.000149 18.58% 5.089 10.467 -105.68%
hsm006.txt ~ 0.000394  0.000312 20.81% 4.230 10.849 -156.48%
hsm007.txt ~ 0.000395 0.000293 25.82% 4.807 3.265 32.08%
hsm008.txt ~ 0.000472 0.000317 32.84% 4.840  3.031 37.38%
hsm009.txt ~ 0.000302 0.000332 -9.93% 4.027 3.794 5.79%
hsm010.txt  0.000288 0.000196 31.94% 5.606 2.063 63.20%
hsmO11l.txt  0.000299 0.000161 46.15% 2.586  2.298 11.14%
hsmO12.txt  0.000230 0.000154 33.04% 3.951 2.441 38.22%
hsm013.txt  0.000217 0.000129 40.55% 2.991 1954 34.67%
hsmO14.txt ~ 0.000840 0.000626 25.48% 4.187 1.907 54.45%
hsmO015.txt ~ 0.000846 0.000624 26.24% 3.648 1.861 48.99%
hsm016.txt  0.000835 0.000661 20.84% 4.114 2102 4891%
hsm017.txt ~ 0.000922 0.000494 46.42% 3.148 1.957 37.83%
hyl001.txt 0.001740 0.000503 71.09% 4.441 2.823 36.43%

Global reduction (avg) 29.79% 14.31%

In order to validate the proposed approach, a general purpose method based on the
technique of antithetic variates is presented and it was applied to three NP-hard
problems and three metaheuristics. The experimental evidence shows that the method
has the capacity of simultaneously to reduce the variance of several random outputs of
the used algorithm. On the other hand, the levels of global of reduction on the
instances used in the test cases go from 14% to 55%. The propose method is one of
the first general purpose methods that allows to incorporate a technique of variance
reduction in computational experiments, independently of the problem solved and of
the metaheuristic used. The method is applicable without greater modifications to any

type of randomized algorithm. Currently the most relevant open question is: why the
reduction don’t operate over several instances
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